609 research outputs found

    Just a Flexible Linker? the Structural and Dynamic Properties of CBP-ID4 Revealed by NMR Spectroscopy

    Get PDF
    Here, we present a structural and dynamic description of CBP-ID4 at atomic resolution. ID4 is the fourth intrinsically disordered linker of CREB-binding protein (CBP). In spite of the largely disordered nature of CBP-ID4, NMR chemical shifts and relaxation measurements show a significant degree of α-helix sampling in the protein regions encompassing residues 2-25 and 101-128 (1852-1875 and 1951-1978 in full-length CBP). Proline residues are uniformly distributed along the polypeptide, except for the two α-helical regions, indicating that they play an active role in modulating the structural features of this CBP fragment. The two helical regions are lacking known functional motifs, suggesting that they represent thus-far uncharacterized functional modules of CBP. This work provides insights into the functions of this protein linker that may exploit its plasticity to modulate the relative orientations of neighboring folded domains of CBP and fine-tune its interactions with a multitude of partners. © 2016 Biophysical Society

    Strongest atomic physics bounds on Non-Commutative Quantum Gravity Models

    Full text link
    Investigations of possible violations of the Pauli Exclusion Principle represent critical tests of the microscopic space-time structure and properties. Space-time non-commutativity provides a class of universality for several Quantum Gravity models. In this context the VIP-2 Lead experiment sets the strongest bounds, searching for Pauli Exclusion Principle violating atomic-transitions in lead, excluding the Ξ\theta-Poincar\'e Non Commutative Quantum Gravity models far above the Planck scale for non-vanishing ΞΌΜ\theta_{\mu \nu} ``electric-like'' components, and up to 6.9⋅10−26.9 \cdot 10^{-2} Planck scales if Ξ0i=0\theta_{0i} = 0.Comment: 7 pages, 2 figure

    Experimental test of Non-Commutative Quantum Gravity by VIP-2 Lead

    Full text link
    Pauli Exclusion Principle (PEP) violations induced by space-time non-commutativity, a class of universality for several models of Quantum Gravity, are investigated by the VIP-2 Lead experiment at the Gran Sasso underground National Laboratory of INFN. The VIP-2 Lead experimental bound on the non-commutative space-time scale Λ\Lambda excludes Ξ\theta-Poincar\'e far above the Planck scale for non vanishing ``electric-like" components of ΞΌΜ\theta_{\mu \nu}, and up to 6.9⋅10−26.9 \cdot 10^{-2} Planck scales if they are null. Therefore, this new bound represents the tightest one so far provided by atomic transitions tests. This result strongly motivates high sensitivity underground X-ray measurements as critical tests of Quantum Gravity and of the very microscopic space-time structure.Comment: 13 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:2209.0007

    VIP-2 —High-Sensitivity Tests on the Pauli Exclusion Principle for Electrons

    Get PDF
    The VIP collaboration is performing high sensitivity tests of the Pauli Exclusion Principle for electrons in the extremely low cosmic background environment of the underground Gran Sasso National Laboratory INFN (Italy). In particular, the VIP-2 Open Systems experiment was conceived to put strong constraints on those Pauli Exclusion Principle violation models which respect the so-called Messiah–Greenberg superselection rule. The experimental technique consists of introducing a direct current in a copper conductor, and searching for the X-rays emission coming from a forbidden atomic transition from the L shell to the K shell of copper when the K shell is already occupied by two electrons. The analysis of the first three months of collected data (in 2018) is presented. The obtained result represents the best bound on the Pauli Exclusion Principle violation probability which fulfills the Messiah–Greenberg rule

    HIGH SENSITIVITY QUANTUM MECHANICS TESTS IN THE COSMIC SILENCE

    Get PDF
    The VIP experiment aims to perform high-precision tests of the Pauli Exclusion Principle for electrons in the extremely low cosmic background environment of the Underground Gran Sasso Laboratories of INFN (Italy). The experimental technique consists in introducing a DC current in a copper conductor, searching for K α PEP-forbidden atomic transitions when the K shell is already occupied by two electrons. The results of a preliminary data analysis, corresponding to the first run of the VIP-2 data taking (2016–2017), are presented. The experimental setup in the final configuration is described together with preliminary spectra from the 2019 data-taking campaign

    High Precision Test of the Pauli Exclusion Principle for Electrons

    Get PDF
    The VIP-2 experiment aims to perform high precision tests of the Pauli Exclusion Principle for electrons. The method consists in circulating a continuous current in a copper strip, searching for the X radiation emission due to a prohibited transition (from the 2p level to the 1s level of copper when this is already occupied by two electrons). VIP already set the best limit on the PEP violation probability for electrons 12ÎČ2<4.7×10−29\frac{1}{2} \beta^2 < 4.7 \times 10^{-29}, the goal of the upgraded VIP-2 (VIolation of the Pauli Exclusion Principle-2) experiment is to improve this result of two orders of magnitude at least. The experimental apparatus and the results of the analysis of a first set of collected data will be presented

    Search for a remnant violation of the Pauli exclusion principle in a Roman lead target

    Get PDF
    In this paper we report on the results of two analyses of the data taken with a dedicated VIP-Lead experiment at the Gran Sasso National Laboratory of the INFN. We use measurements taken in an environment that is especially well screened from cosmic rays, with a metal target made of “Roman lead” which is characterised by a low level of intrinsic radioactivity. The analyses lead to an improvement, on the upper bounds of the Pauli Exclusion Principle violation for electrons, which is more than one (four) orders of magnitude, when the electron-atom interactions are described in terms of scatterings (or close encounters) respectively

    NEW CONCEPTS IN TESTS OF THE PAULI EXCLUSION PRINCIPLE IN BULK MATTER

    Get PDF
    The standard scheme of several tests of the Pauli Exclusion Principle in bulk matter — both in the experiment and in the subsequent data analysis — has long been based on the seminal paper by E. Ramberg, G.A. Snow [Phys. Lett. B 238, 438 (1990)]. The ideas exposed in that paper are so simple and immediate that they have long gone unchallenged. However, while some of the underlying approximations are still valid, other parts of the article must be reconsidered. Here, we discuss some new concepts that are related to the motion of the electrons in the test metal (the “target” of the experiment) and which have been recently studied in the framework of the VIP-2 Collaboration
    • 

    corecore